• Users Online: 115
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 4  |  Issue : 1  |  Page : 11-21

Structure based virtual screening, docking and molecular dynamic simulation studies to identify potent mdm2-p53 inhibitors: Future implications for cancer therapy


1 Lecturer, Andhra Loyola College, Vijayawada, India
2 Avalon University School of Medicine, Curacao-Dutch, Netherlands, Central America

Correspondence Address:
M V Raghavendra Rao
Professor of Microbiology, Dean of student affairs, Avalon University School of Medicine, Sta. Rosaweg 122-124, Willemstad Curacao, Netherlands Antilles

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.5530/ami.2017.4.3

Rights and Permissions

Objective: To identify the p53 binding pocket as well as active residues in mdm2 protein, and search for similar (or) better compounds to inhibit mdm2-p53 interactions in comparison to FDA approved drug (Nutlin) by ligand and structure based virtual screening methods, docking, and molecular dynamic simulation studies. Methods: A structure and ligand based virtual screening for mdm2 protein; targeting the key residues involved in their active binding of p53 peptide was conducted after obtaining structurally suitable compounds similar to Nutlin from ZINC database. These compounds are virtually screened onto the mdm2 protein targeting its active binding site where p53 binds. The best compound with highest binding affinity was taken up for further analysis using molecular dynamic simulations for further validating the docking studies and to reveal interactions during the conformational changes Results: We discovered several compounds that are potentially able to block the interaction between active residues of mdm2 and p53 complex, suggesting their capability to act as anti-cancer agents. As proven by our structure based virtual screening studies coupled with semi-flexible and flexible docking studies, compound ZINC59256947 was found to be the strongest inhibitors for mdm2 protein amongst all of those isolates from ZINC database. Conclusion: Our results suggest that, a simple, selective and reliable inhibition assay can be performed to search for novel inhibitors of p53-mdm2 interaction. Therefore this study provides a rationalization to the ability of a ZINC59256947, an isolate from ZINC database with strong binding affinity towards mdm2 protein, for future implications as anti-cancer agent.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed5844    
    Printed314    
    Emailed0    
    PDF Downloaded863    
    Comments [Add]    
    Cited by others 3    

Recommend this journal